If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x^2=2018
We move all terms to the left:
2x^2+3x^2-(2018)=0
We add all the numbers together, and all the variables
5x^2-2018=0
a = 5; b = 0; c = -2018;
Δ = b2-4ac
Δ = 02-4·5·(-2018)
Δ = 40360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40360}=\sqrt{4*10090}=\sqrt{4}*\sqrt{10090}=2\sqrt{10090}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10090}}{2*5}=\frac{0-2\sqrt{10090}}{10} =-\frac{2\sqrt{10090}}{10} =-\frac{\sqrt{10090}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10090}}{2*5}=\frac{0+2\sqrt{10090}}{10} =\frac{2\sqrt{10090}}{10} =\frac{\sqrt{10090}}{5} $
| -18+5x=-29=13+2x | | 9/21=x/7 | | 65/52=s/4 | | -4=-3a+8 | | X=706.86xπ2 | | 2^{-4x}=13^{-x-3} | | 9/7=x/14 | | 28x-112=-28x+14 | | 5u-10=25 | | 1/3x=300 | | 15=23-4k | | 17=-8+5x | | -36=9(s-96) | | 2(q-81)=28 | | 16/28=4/z | | (x-4)/(-2x+1)=-14/28 | | 20-3t=13 | | 1/8x+28=7/8x-14 | | 4x–22.2=1.9 | | w/4-2=3 | | 16^-b=64^2b | | 3+5j=23 | | 3=y-49/9 | | 5(2.4+-0.6y)+3y=12 | | 24-5t=19 | | r/3+18=27 | | b/3+6=10 | | 12+2m=20 | | x^2=17/25 | | u/2+10=14 | | Y=(4-y)*(4-y)-14-6y | | w/3+11=13 |